Multifractal Measures and a Weak Separation Condition

نویسندگان

  • Ka-Sing Lau
  • Sze-Man Ngai
چکیده

We define a new separation property on the family of contractive similitudes that allows certain overlappings. This property is weaker than the open set condition of Hutchinson. It includes the well-known class of infinite Bernoulli convolutions associated with the P.V. numbers and the solutions of the two-scale dilation equations. Our main purpose in this paper is to prove the multifractal formalism under such condition. 1999 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifractal formalism for self-similar measures with weak separation condition

For any self-similar measure μ on R satisfying the weak separation condition, we show that there exists an open ball U0 with μ(U0) > 0 such that the distribution of μ, restricted on U0, is controlled by the products of a family of non-negative matrices, and hence μ|U0 satisfies a kind of quasi-product property. Furthermore, the multifractal formalism for μ|U0 is valid on the whole range of dime...

متن کامل

Multifractal Analysis of Bernoulli Convolutions Associated with Salem Numbers

We consider the multifractal structure of the Bernoulli convolution νλ, where λ−1 is a Salem number in (1, 2). Let τ(q) denote the L spectrum of νλ. We show that if α ∈ [τ ′(+∞), τ ′(0+)], then the level set E(α) := { x ∈ R : lim r→0 log νλ([x− r, x+ r]) log r = α } is non-empty and dimH E(α) = τ∗(α), where τ∗ denotes the Legendre transform of τ . This result extends to all self-conformal measu...

متن کامل

Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum

We consider a class of Gibbs measures on self-affine Sierpinski carpets and perform the multifractal analysis of its elements. These deterministic measures are Gibbs measures associated with bundle random dynamical systems defined on probability spaces whose geometrical structure plays a central rôle. A special subclass of these measures is the class of multinomial measures on Sierpinski carpet...

متن کامل

Application of multifractal modeling for separation of sulfidic mineralized zones based on induced polarization and resistivity data in the Ghare-Tappeh Cu deposit, NW Iran

The aim of this study was to identify various sulfidic mineralized zones in the Ghare-Tappeh Cu deposit (NW Iran) based on geo-electrical data including induced polarization (IP) and resistivity (RS) using the concentration-volume (C-V) and number-size (N-S) fractal models. The fractal models were used to separate high and moderate sulfidic zones from low sulfidic zones and barren wall rocks. B...

متن کامل

Multifractal Analysis for Bedford-mcmullen Carpets

In this paper we compute the multifractal analysis for local dimensions of Bernoulli measures supported on the self-affine carpets introduced by Bedford-McMullen. This extends the work of King where the multifractal analysis is computed with strong additional separation assumptions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998